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Representational Similarity Analysis (RSA)
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similarity between model and IT

RSA to compare DNNSs to the visual pathway

[Spearman correlation
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Responses

“Deep neural networks are uninterpretable and therefore
can’t help us understand the brain”

“'What | cannot create, | do not understand”
-Richard Feynman”

“Machine learning models have nothing to do with the
brain”

“Convolutional neural networks were inspired by the

mammalian visual system”

“You're just replacing one black box with another”

“Could a neuroscientist understand a microprocessor?”



Questions

1. What do we learn from comparing artificial and biological neural networks?

a. What kinds of questions does this analysis answer?
b. How does this type of analysis compare to existing analyses approaches?
c. Does it provide a new way of answering existing questions or does it ask new questions?

2. How does this type of science progress?

a. How do we get closer to truth?
b. What do we want the product of our science to be? What is success?

3. What is the role of the artificial neural network in this framework?
a. Isitan analysis tool, a computational model, or a model organism?

4. |s this approach better than other approaches?



Outline

e Situate
o How does this approach fit into the landscape of other approaches?

e Literature review
o Setting the scene
o Deep networks are good models of the brain
o Thoughts and feelings
o Now

e Questions recap and conclusions



Topics at the intersection of Al and neuroscience

Areas of study

1. Representations ) )
a. How is relevant information encoded?

b.  How is information being transformed? )
. — heuroscience
2. Architectures .
a. How are different components put science of

-

most

2 _ . .
 together? most machine intelligence
3. Training algorithms

a. Learning rules and optimization
b. Cost functions
c.  Curriculum — _

 learning




Two Scientific Approaches

e Null hypothesis significance testing
o Searching for reliable effects
o e.g. classical fMRI GLM analysis
e Model comparison
Adjudicate among competing candidate models of some process/phenomenon
Computational neuroscience
e.g. Neural encoding analysis, often
e.g. Comparing artificial and biological network activations, usually

o O O O



Model Comparison Approach
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RESEARCH ARTICLE

Scientific discovery in a model-centric
framework: Reproducibility, innovation, and
epistemic diversity

Berna Devezer'°**, Luis G. Nardin:%°%, Bert Baumgaertner>>*, Erkan Ozge Buzbas**>*

e Simulation of scientific discovery in a model-centric approach
o Innovative research speeds up the discovery of scientific truth by facilitating the exploration of
model space
o Epistemic diversity optimizes across desirable properties of scientific discovery
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Statistical tools to compare two sets Applications

of variables
e Linear Regression e Questions about representations in
e Representational Similarity Analysis artificial and biological neural networks
e Pattern Component Modeling e Questions about architecture in artificial
e Canonical Correlation Analysis and biological neural networks
o  Singular Vector CCA e Questions about learning in artificial and

o  Projection Weighted CCA
e Centered Kernel Alignment
e Hyperalignment

biological neural networks

e Comparing brains to models, comparing
models to models, comparing brains to
brains.

An overview of functional alignment in artificial and biological neural networks:
Current recommendations and open questions

Elizabeth DuPre (elizabeth.dupre@mail.mcgill.ca)
Montreal Neurological Institute, McGill University Check out
Montreal, QC, Canada her poster
|
Jean-Baptiste Poline (jean-baptiste.poline@mcgill.ca) at MAIN!

Montreal Neurological Institute, McGill University
Montreal, QC, Canada



Using SVCCA to study learning dynamics in deep
networks

0% trained 35% t.rained 75% trained 100% trained

Convnet, CIFAR-10
layer (during training)

Weighted SVCCA scale

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Raghu, M., Gilmer, J., Yosinski, J., & Sohl-Dickstein, J. (2017). SVCCA: Singular Vector Canonical Correlation Analysis for Deep
Understanding and Improvement. NeurlPS.



DFT CCA similarity between
Resnet and Convnet on CIFAR10
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Similarity of Neural Network Representations Revisited

Simon Kornblith! Mohammad Norouzi' Honglak Lee'? Geoffrey Hinton '

e Paper
e (Colab

Invariant to

Invertible Linear | Orthogonal | Isotropic
Similarity Index Formula Transform Transform | Scaling
Linear Regression (R7y) | [|QT XT2/11 X2 Y Only v/ v/
CCA (Rgca) QY Qx|[#/p1 v v v
CCA (pcca) 103 Qx|]/m v v 7
SVCCA (R3ycca) I|(Uy Ty)TUx Tx ||2/min(||Tx |13, ||Ty||2) | Ina Subspace v v
SVCCA (ﬁSVCCA) H(UyTy)TUxTx"*/min(HTXulZ;, HTyHIZ:) In aSubspace v v
PWCCA Ty aipifllell, ai =375 [(hi, x;)| X X v
Linear HSIC [lYTX|2 X v X
Linear CKA |[YTX12/(1X X6l 7Y ) X v v
RBF CKA tw(KHLH)/\/u(KHK H)uw(LHLH) X v v

©) Similarity of Neural Network Representations Revisited Demo.ipynb ap Slare
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~ Demo code for "Similarity of Neural Network Representations Revisited"

Copyright 2019 Google LLC

Licensed under the Apache License, Version 2.0 (the "License”); you may not use this file except in compliance with the License.
obtain a copy of the License at

https://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASI¢
WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing pert
limitations under the License.

Please cite as:

@inproceedings{pmlr-v97-kornblith19a,
title = {Similarity of Neural Network Representations Revisited},
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© import numpy as np

def gram_linear(x):
“""Compute Gram (kernel) matrix for a linear kernel.

Arac-


https://colab.research.google.com/github/google-research/google-research/blob/master/representation_similarity/Demo.ipynb#scrollTo=MkucRi3yn7UJ
https://colab.research.google.com/github/google-research/google-research/blob/master/representation_similarity/Demo.ipynb#scrollTo=MkucRi3yn7UJ
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Untangling invariant object

recognition

James J. DiCarlo and David D. Cox

TRENDS in Cognitive Sciences Vol.11 No.8

Full text provided by www.sciencedirect com
ey

“=.° ScienceDirect

Talking about neural processes
with the same language used to
talk about DNNs

McGovern Institute for Brain Research, and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology,

Cambridge, MA 02139, USA

Despite tremendous variation in the appearance of visual

bj pri can r a multitude of objects,
each in a fraction of a second, with no apparent effort.
However, the brain mechanisms that enable this funda-
mental ability are not understood. Drawing on ideas from
neurophysiology and putation, we present a grap-
hical perspective on the key computational challenges of
object recognition, and argue that the format of neuronal
population repr 1 and a property that we term
‘object tangling’ are central. We use this perspective to
show that the primate ventral visual processing stream
achieves a particularly effective solution in which single-
neuron invariance is not the goal. Finally, we speculate on
the key neuronal mechanisms that could enable this
solution, which, if understood, would have far-reaching
implications for cognitive neuroscience.
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that some approa Visual Object Recognition?

distract from, unde

What is object rec James J. DiCarlo,'* Davide Zoccolan,? and Nicole C. Rust?
We define object r 1pgpartment of Brain and Cognitive Sciences and McGovern Institute for Brain Research, Massachusetts Institute of Technology,
discriminate each  Cambridge, MA 02139, USA
ObJECt§ (‘categorizg 2Cognitive Neuroscience and Neurobiology Sectors, International School for Advanced Studies (SISSA), Trieste, 34136, Italy
materials, texturetspgpartment of Psychology, University of Pennsylvania, Philadelphia, PA 19104, USA
avar-a-ranaa-ofd «Gorrespondence: dicarlo@mit.edu

DOI 10.1016/j.neuron.2012.01.010

Mounting evidence suggests that ‘core object recognition,’ the ability to rapidly recognize objects despite
substantial appearance variation, is solved in the brain via a cascade of reflexive, largely feedforward
computations that culminate in a powerful neuronal representation in the inferior temporal cortex. However,
the algorithm that produces this solution remains poorly understood. Here we review evidence ranging
from individual neurons and neuronal populations to behavior and computational models. We propose
that understanding this algorithm will require using neuronal and psychophysical data to sift through many
computational models, each based on building blocks of small, canonical subnetworks with a common
functional goal.
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Deep Supervised, but Not Unsupervised, Models May
Explain IT Cortical Representation

Seyed-Mahdi Khaligh-Razavi*, Nikolaus Kriegeskorte*

Medical Research Council, Cognition and Brain Sciences Unit, Cambridge, United Kingdom

Abstract
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Behavioral/Cognitive
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unsupervised models
Radboud University, Donders Institute for Brain, Cogni
labeled images, reach > » L0g
the T data. Combinn sensory cortex
the margin between ¢
explained our IT dat

supervised learning t Converging evidence suggests that the primate
- areas. We quantitatively show that there indeed

brain. This was achieved by mapping thousands ¢

network. Our approach also revealed a fine-grain

Daniel L K Yamins!2 & James ] DiCarlo!-2

Fueled by innovation in the computer vision and ar
allowed decoding of representations from hum intelligence communities, recent developments in
developed approach. Stimulus features that su  COMPutational neuroscience have used goal-driven
plicitly tuned for object categorization. This proy ~ convolutional neural networks (HCNNs) to make str
the functional organization of the primate ventr; modeling neural single-unit and population respons
visual cortical areas. In this Perspective, we review
progress in a broader modeling context and describ
the key technical innovations that have supported if
outline how the goal-driven HCNN approach can be
delve even more deeply into understanding the dew
and organization of sensory cortical processing.

Key words: deep learning; functional magnetic r
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2014-2016

DNNs are good models of the
primate visual (and maybe
auditory) sensory systems

cmpumtons v Deep Neural Networks Reveal a Gradient in the Complexity

B e mut cucliand maree A Jvanceren  JSING g0aAl-driven deep learning models to understand

Brains on Beats

Umut Giiclii Jordy Thielen
Radboud University, Donders Institute for Radboud University, Donders Institute for
Brain, Cognition and Behaviour Brain, Cognition and Behaviour
Nijmegen, the Netherlands Nijmegen, the Netherlands
u.guclu@donders.ru.nl j-thielen@psych.ru.nl
Michael Hanke* Marecel A. J. van Gerven’
Otto-von-Guericke University Magdeburg Radboud University, Donders Institute for
Center for Behavioral Brain Sciences Brain, Cognition and Behaviour
Magdeburg, Germany Nijmegen, the Netherlands
michael.hanke@ovgu.de m.vangerven@donders.ru.nl
Abstract

We developed task- optlmlzed deep neural networks (DNNs) that achieved state- of-
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“AlexNet, with
features remixed
and reweighted,
fully explains data
from human IT”

Khaligh-Razavi, S.-M., & Kriegeskorte, N. (2014). Deep
Supervised, but Not Unsupervised, Models May
Explain IT Cortical Representation. PLoS
Computational Biology, 10(11), e1003915.
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“Layer assignments
Increase as a
function of position
on the occipital
cortex”

Layer assignment (%)

V4 LO
Visual area of S1

12 3 4 5 6 7 8

Layer assignment (#)

Gugla, U., & van Gerven, M. A. J. (2015). Deep Neural
Networks Reveal a Gradient in the Complexity of
Neural Representations across the Ventral Stream.
The Journal of Neuroscience
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Analyzing biological and artificial neural networks:
challenges with opportunities for synergy? )
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How can deep learning advance computational odl
5 3 ; s updates
modeling of sensory information processing? ’

Jessica A.F. Thompson'?, Yoshua Bengio?, Elia Formisano®, and
Marc Schénwiesner®4
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Thoughts and feelings

Outlook on deep neural networks in computational cognitive neuroscience
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A deeper understanding of the brain Predict, then simplify

Bryan Tri >
i PP Jonas Kubilius ™"

University of Waterloo, Canada

@ McGovern Institute for Brain Research, Institute of T Cambridge 46-6161, USA
71 Brain and Cognition, KU Leuven, Leuven, Belgium




Panel on Explaining Cognition, Brain
Computation and Intelligent Behaviour

Question posed by Jim DiCarlo:
What is your definition of success?

Answers from Yann LeCun, Jackie Gottlieb, Josh
Tenenbaum, and Nancy Kanwisher



https://docs.google.com/file/d/1ZRt4U7N7AEpsou9nbMk9pHtpd6NeCP43/preview

Is it a problem?

e \We need more clarity and consensus about the long term goals of our field.
o  What will be the form of adequate explanations of intelligent capacities?
e [t's not at all problematic that we have varied short-term goals. In fact it is

probably beneficial!
e (Good predictions of brain activity is not a sufficient condition for evaluating

models. It is just one of several constraints on model space.




2019

e How good are these
models really?
e Adding biological realism



How well do deep neural networks trained on object 2019

recognition characterize the mouse visual system?
e How good are these

models really?

“‘no match between the hierarchy of mouse visual e Adding biological realism
cortical areas and the layers of CNNs trained on object
categorization.”

“Although [the network] achieves state-of—the-art

erformance. itis m-*"'a- " ot oot
e v Brain-Score: ‘Which Artificial Neural Network for

% Institute Bioinformatics and M]Lef\i:ta}:ol ObleCt Recogr"tlon |S most Braln-lee?
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Brain-Score

As deep ANNSs continue to evolve, are they becoming more or less brain-like?
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Are Topographic Deep Convolutional Neural Networks Better Models of
the Ventral Visual Stream? 2 O 1 9

Kamila Maria Jozwik (kmjozwik@mit.edu)
University of Cambridge and McGovern Institute for Brain Research, Center for Brains, Minds and Machines at

Massachusetts Institute of Technology, 43 Vassar St L How good are these
Cambridge, MA 02139 United States models really?
Hyodong Lee (hyo@mit.edu) e Adding biological

Department of Electrical Engineering and Computer Science at MIT i
realism

Nancy Kanwisher (hgk@mit.edu)
McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences at MIT

Do Biologically-Realistic Recurrent Architectures Produce Biologically-Realistic

James J. Dil M 152
McGovern Institute for Brain Research ¢ odels?

Grace W. Lindsay (gracewlindsay@gmail.com)

“‘Here we show that it is possible to incorporate more biologically
realistic details, in the form of recurrent connections, into a standard
convolutional neural network... In doing so, we show that certain
architectural features— such as only allowing excitatory cells to be
output cells—help replicate findings from the data and lead to different
types of image representations. The architectural features that provide
these benefits do not, however, necessarily make the image
representations in the model more similar to that of V4 data.
Reconciling these differences will be important.”



What’s next?

e (Other modalities
o Audition
o Language

e Formalizing our shared definition of long-term success
e FEvaluation metrics: What does it mean to be ‘brain-like’?

e Experimental design
o Collecting large amounts of data from individual subjects



Questions

1. What do we learn from comparing artificial and biological neural networks?

a. What kinds of questions does this analysis answer?
b. How does this type of analysis compare to existing analyses approaches?
c. Does it provide a new way of answering existing questions or does it ask new questions?

2. How does this type of science progress?

a. How do we get closer to truth?
b. What do we want the product of our science to be?

3. What is the role of the artificial neural network in this framework?
a. Isitan analysis tool, a computational model, or a model organism?

4. |s this approach better than other approaches?



Conclusion

e Comparing activations in biological and artificial neural networks is a
promising approach to study the architectures and processes that support
brain-like representations and the nature of representations in intelligent
systems

e Butit's not just about chasing high accuracies
o Learning how to build a neural network won'’t teach you how to use them to do science
o Science is not an engineering problem, no matter how much we want it to be
o The (long term) goal of science is to generate scientific explanations, which is not the same as
statistically explaining the variance in our data

e Epistemic diversity optimizes scientific discovery



Thank you for your attention



Questions?



