
MAIN Tutorials
Variational autoencoders for neural data analysis

Blake Richards

Mila/McGill/CIFAR

Outline

1. Introduction to variational Bayesian methods

2. Variational autoencoders

3. Example use of VAEs for neuroscience: LFADS

4. Example code

1

Introduction to variational
Bayesian methods

Latent variables

Variational autoencoders (VAEs) are a deep learning technique for
inferring latent variables from data using a variational Bayesian
approach.

There’s a lot to unpack there, let’s start with the most important one:

What are latent variables?

2

Latent variables

Latent variables are variables that are not directly observable, i.e.
most of everything we actually care about.

3

Latent variables

4

Latent variables

Since we can’t observe latent variables, we must infer their values
from the data we can observe.

5

Inferring latent variables

How should we infer latent variables?

Ideally, we would be good Bayesians about it.

Say we have data x, that was generated from some latent variables z
via a parameterized probability distribution pθ(x|z). We want to infer
z using x. So, we should use the posterior:

pθ(z|x) =
pθ(x|z)pθ(z)

pθ(x)

6

Inferring latent variables

How should we infer latent variables?

Ideally, we would be good Bayesians about it.

Say we have data x, that was generated from some latent variables z
via a parameterized probability distribution pθ(x|z). We want to infer
z using x. So, we should use the posterior:

pθ(z|x) =
pθ(x|z)pθ(z)∫
pθ(x|z)pθ(z)dz

7

Inferring latent variables

Problem
If z is a continuous variable, and pθ(x|z) is a complicated function,
then

∫
pθ(x|z)pθ(z)dz is intractable. So, we have no way of

estimating our posterior directly:

pθ(z|x) =
pθ(x|z)pθ(z)∫
pθ(x|z)pθ(z)dz

8

Variational Bayesian methods

Solution
We can get around our intractable posterior by using a tractable,
variational approximation, qϕ(z|x) instead (ϕ refers to the
parameters for this approximation). Our goal then becomes:

qϕ(z|x) ≈ pθ(z|x) =
pθ(x|z)pθ(z)∫
pθ(x|z)pθ(z)dz

9

Variational Bayesian methods

We measure the dissimilarity between qϕ(z|x) and pθ(z|x) using the
Kullback-Leibler divergence (DKL):

DKL(qϕ(z|x)||pθ(z|x)) =
∫
qϕ(z|x) log(

qϕ(z|x)
pθ(z|x)

)dz

10

Kullback-Leibler divergence

DKL(q||p) measures the number of bits that would be required to
encode data drawn from q using p. It is zero if and only if q = p, and
rises as they become less similar:

11

Variational Bayesian methods

So, to get q ≈ p we want to reduce DKL(qϕ(z|x)||pθ(z|x)):

DKL(qϕ(z|x)||pθ(z|x)) =
∫
qϕ(z|x) log(

qϕ(z|x)
pθ(z|x)

)dz

=

∫
qϕ(z|x) log(

qϕ(z|x)
pθ(z, x)

)dz+ log(pθ(x))

Giving us:

log(pθ(x)) = DKL(qϕ(z|x)||pθ(z|x))−
∫
qϕ(z|x) log(

qϕ(z|x)
pθ(z, x)

)dz

= DKL(qϕ(z|x)||pθ(z|x))− L(ϕ, θ; x)

12

Variational Bayesian methods

L(ϕ, θ; x) is our variational lower bound on the evidence (log(pθ(x))).
Because log(pθ(x)) is fixed w.r.t. q, we can reduce
DKL(qϕ(z|x)||pθ(z|x)) by maximizing L(ϕ, θ; x). Thus, we want to
maximize:

L(ϕ, θ; x) =
∫
qϕ(z|x) log(

qϕ(z|x)
pθ(z, x)

)dz

= Eqϕ(z|x)[log(pθ(x|z))]− DKL(qϕ(z|x)||p(z))
= Expected log-likelihood− Deviation from prior

13

Interim summary

Here’s what we’ve covered so far:

• Latent variables, z, are unobservable variables that cause the
data we can observe, x

• Inferring latent variables using standard Bayesian techniques
can be intractable

• Variational Bayesian methods make it tractable by
approximating the true posterior pθ(z|x), with a variational
approximation qϕ(z|x)

• To make our approximation better, we optimize our variational
lower bound: L(ϕ, θ; x)

14

Variational autoencoders

Variational autoencoders: the basic idea

Optimizing the variational lower bound, L(ϕ, θ; x), traditionally
involved computationally expensive techniques, such as
Markov-Chain Monte-Carlo. This limited the usefulness of variational
Bayesian methods for large-scale datasets.

Kingma & Welling (2014; arXiv:1312.6114) came up with
a solution using deep neural networks: the variational autoencoder
(VAE).

15

Variational autoencoders: the basic idea

The basic idea is this, make a deep neural network with an
autoencoder-like architecture:

• The input is x
• Early layers compute qϕ(z|x) (encoding)
• Use this to get a sample of z from qϕ(z|x) (sampling)
• Later layers compute pθ(x|z) (decoding)
• Then, use gradient descent to minimize −L(ϕ, θ; x)

16

The reparameterization trick

Cool idea, but...

Problem
If we sample z from qϕ(z|x) stochastically, how can we calculate the
gradient of our loss, −∇ϕL(ϕ, θ; x)?

Basically, what is the gradient of a random sample with respect to its
distribution parameters?

17

The reparameterization trick

We can get around this using the “reparameterization trick”:

Solution
Alter the way that we parameterize z. Rather than saying:

z ∼ N (µ(x;ϕ), σ(x;ϕ)2)

We say:

z = µ(x;ϕ) + σϵ

ϵ ∼ N (0, 1)

Now, z is a deterministic function of ϕ and x, and the randomness
comes only from ϵ. This allows us to calculate gradients on
−∇ϕL(ϕ, θ; x)

18

Optimizing VAEs

Thanks to the reparameterization trick, we can now employ all the
standard tools of deep learning for optimization (ADAM, dropout,
etc.), and standard differentiable architectures (convolutions, LSTMs,
etc.) and learn on large datasets to great effect.

19

An example of latent variable learning in VAEs

A recent paper from DeepMind illustrates that power of VAEs (a
conditional version) for learning appropriate latent spaces:

20

An example of latent variable learning in VAEs

21

Interim summary

Here’s where we’re at:

• Variational Bayesian methods were traditionally too
computationally expensive

• VAEs provide a deep learning approach to Variational Bayesian
methods with tractable optimization

• The key is the use of an autoencoder-like architecture and the
reparameterization trick

• The reparameterization trick lets us use gradient descent to
optimize L(ϕ, θ; x), which makes inference on hard data possible

22

Example use of VAEs for
neuroscience: LFADS

Latent Factor Analysis of Dynamical Systems (LFADS)

Latent Factor Analysis of Dynamical Systems (LFADS) is a VAE
approach to analyzing data from large-scale neural recordings (see
Pandiranath et al. (2018), Nature Methods, 15:805)

• It’s based on the idea that the activity we record (e.g. spiking
data from NeuroPixels) is actually just a reflection of latent
variables composed of a lower-dimensional dynamical system.

• This lower dimensional system could reflect connectivity
constraints, motor programs, etc.

• So, in order to get at the values we really care about, we need to
do latent variable inference.

23

Latent Factor Analysis of Dynamical Systems (LFADS)

Basic idea: use a recurrent VAE to infer the initial state and internal
dynamics of the latent space system, then analyse the latent space
versions of the data, rather than the data itself.

Pandiranath et al. (2018), J. Neurosci., 38:9390

24

Latent Factor Analysis of Dynamical Systems (LFADS)

Here is the architecure of an LFADS network:

Pandiranath et al. (2018), Nature Methods, 15:805

25

Example use of LFADS on synthetic data

LFADS can infer the true latent variables in synthetic datasets:

Sussillo et al. (2016), arXiv: 1608.06315
26

Example use of LFADS on real data

Decoding behavior from LFADS latent variables can be better than
standard techniques:

Pandiranath et al. (2018), Nature Methods, 15:805

27

Example code

Running LFADS in PyTorch

To the Batmobile Jupyter Notebook!
Code is available at
https://github.com/lyprince/lfads_demo

28

	Introduction to variational Bayesian methods
	Variational autoencoders
	Example use of VAEs for neuroscience: LFADS
	Example code

